Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Immunol ; 15: 1360022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469309

RESUMO

Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Suínos , Humanos , Animais , Porco Miniatura/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Haplótipos
2.
Front Immunol ; 14: 1159970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409113

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Feminino , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Linfócitos T CD8-Positivos , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Leucócitos Mononucleares , Sus scrofa/genética , Transcriptoma
3.
Arch Toxicol ; 97(4): 1079-1089, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781434

RESUMO

The impact of the Fusarium mycotoxin deoxynivalenol (DON) on the immune response against porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and infection was investigated. Forty-two weaned piglets were separated into seven groups and received three different diets: Low DON (1.09 ppm), High DON (2.81 ppm) or No DON. These three treatments were split further into either vaccinated (Ingelvac PRRSFLEX EU) and challenged with PRRSV 28 days post-vaccination, or only infected at day 28. A seventh group received no DON, no vaccination, and no infection. Two weeks after challenge infection, when pigs were euthanized, the number of IFN-γ producing lymphocytes in the blood of vaccinated animals was lower in pigs on High DON compared to animals on Low DON or No DON. Intracellular cytokine staining showed that vaccinated animals fed with the Low DON diet had higher frequencies of TNF-α/IFN-γ co-producing CD4+ T cells than the other two vaccinated groups, particularly in lung tissue. Vaccinated animals on High DON had similar viral loads in the lung as the non-vaccinated groups, but several animals of the Low DON or No DON group receiving vaccination had reduced titers. In these two groups, there was a negative correlation between lung virus titers and vaccine-specific TNF-α/IFN-γ co-producing CD4+ T cells located either in lung tissue or blood. These results indicate that after PRRSV vaccination and infection, high levels of DON negatively influence immune parameters and clearance of the virus, whereas low DON concentrations have immunomodulatory effects.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Fator de Necrose Tumoral alfa , Anticorpos Antivirais , Imunidade
4.
Front Immunol ; 14: 1327776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264655

RESUMO

Considering the similarities between swine and humans, it is a logical consequence to use swine as a translational model in research and drug development, including non-clinical safety. Here, we compared the reactivity of peripheral blood mononuclear cells (PBMCs) from humans and minipigs under the influence of different compounds in vitro. We conducted a flow cytometry-based proliferation assay that focused on the T-cell response to three different stimuli: concanavalin A (ConA), phytohemagglutinin-L (PHA-L), and staphylococcal Enterotoxin B (SEB). Furthermore, four approved immunosuppressive drugs-abatacept, belatacept, rapamycin, and tofacitinib-which are used for the treatment of rheumatoid arthritis or rejection in transplant recipients, were combined with the different stimuli. This allowed us to study the effect of suppressive drugs in comparison with the different stimuli in both species. We examined proliferating T cells (CD3+) and investigated the presence of TCR-αß+ and TCR-γδ+ T cells. Differences in the response of T cells of the two species under these various conditions were evident. CD4+ T cells were more activated within humans, whereas CD8+ T cells were generally more abundant in swine. The effectiveness of the used humanized antibodies is most likely related to the conserved structure of CTLA-4 as abatacept induced a much stronger reduction in swine compared with belatacept. The reduction of proliferation of rapamycin and tofacitinib was highly dependent on the used stimuli. We further investigated the effect of the immunosuppressive compounds on antigen-specific restimulation of pigs immunized against porcine circovirus 2 (PCV2). Treatment with all four compounds resulted in a clear reduction of the proliferative response, with rapamycin showing the strongest effect. In conclusion, our findings indicate that the effectiveness of suppressive compounds is highly dependent on the stimuli used and must be carefully selected to ensure accurate results. The results highlight the importance of considering the response of T cells in different species when evaluating the potential of an immunomodulatory drug.


Assuntos
Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Humanos , Suínos , Animais , Porco Miniatura , Abatacepte , Imunossupressores , Sirolimo , Receptores de Antígenos de Linfócitos T
5.
Front Immunol ; 13: 1055048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426366

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viruses for the global swine industry. Infection during late gestation causes reproductive failure but the local immune response in utero remains poorly understood. In this study, an experimental PRRSV-infection model with two different PRRSV-1 field isolates was used to investigate the immune cell phenotypes at the maternal-fetal interface during late gestation. In addition, phenotypic changes induced by a modified live virus (MLV, ReproCyc® PRRS EU) vaccine were studied. Vaccinated (n = 12) and non-vaccinated pregnant gilts (n = 12) were challenged with either one of the PRRSV-1 field isolates (low vs. high virulent, LV or HV) or sham-inoculated at day 84 of gestation. Twenty-one days post infection all gilts were euthanized and the fetal preservation status for all fetuses per litter was assessed. Leukocytes from the maternal-fetal interface were isolated and PRRSV-induced changes were investigated using ex vivo phenotyping by flow cytometry. PRRSV load in tissue from the maternal endometrium (ME) and fetal placenta (FP) was determined by RT-qPCR. In the ME, a vast increase in CD8ß T cells with CD8αposCD27dim early effector phenotype was found for fetuses from the non-vaccinated LV and HV-challenged gilts, compared to non-treated and vaccinated-only controls. HV-challenged fetuses also showed significant increases of lymphocytes with effector phenotypes in the FP, including NKp46pos NK cells, CD8αhigh γδ T cells, as well as CD8αposCD27pos/dim CD4 and CD8 T cells. In vaccinated animals, this common activation of effector phenotypes was more confined and the fetal preservation status significantly improved. Furthermore, a negative correlation between the viral load and CD163highCD169pos mononuclear phagocytic cells was observed in the FP of HV-infected animals. These results suggest that the strong expansion of effector lymphocytes in gilts that were only infected causes immune-pathogenesis rather than protection. In contrast, the attenuated MLV seems to dampen this effect, yet presumably induces memory cells that limit reproductive failure. This work provides valuable insights into changes of local immune cell phenotypes following PRRSV vaccination and infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Feminino , Gravidez , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vacinação , Placenta , Sus scrofa , Leucócitos
6.
Front Immunol ; 13: 1003986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203585

RESUMO

Interest in Ellegaard Göttingen Minipigs (EGMs) as a model in experimental medicine is continuously growing. The aim of this project is to increase the knowledge of the immune system of EGMs as information is still scarce. Therefore, we studied the postnatal maturation of their immune system from birth until 126 weeks of age. For the first 26 weeks of the study, animals were kept under pathogen-reduced conditions (SPF) and afterwards under conventional housing conditions. The development of the immune system was analyzed by monitoring changes in total numbers of leukocytes and lymphocytes of ten individuals and the composition of leukocyte populations by multi-color flow cytometry (FCM). We followed the presence of monocytes using monoclonal antibodies (mAbs) against CD172a+ and CD163+ and B cells based on the expression of CD79a. NK cells were distinguished as CD3-CD16+CD8α+/dim cells and further subdivided using NKp46 (CD335) expression into NKp46-, NKp46+, and NKp46high NK cells. T-cell receptor (TCR) γδ T cells were defined by the expression of TCR-γδ and different subsets were determined by their CD2 and perforin expression. TCR-αß T cells were classified by their CD8ß+ or CD4 expression. For monitoring their differentiation, expression of CD27 and perforin was investigated for CD8ß++ T cells and CD8α together with CD27 for CD4+ T cells. We clearly detected a postnatal development of immune cell composition and identified phenotypes indicative of differentiation within the respective leukocyte subsets. Examination of the development of the antigen-specific immune system after transfer to different distinct housing conditions and after vaccination against common porcine pathogens such as porcine circovirus 2 (PCV2) revealed a markedly increased presence of more differentiated CD8+ and CD4+ T cells with central and effector memory T-cell phenotypes. To complement the findings, a PCV2 vaccine-specific antigen was used for in vitro restimulation experiments. We demonstrated antigen-specific proliferation of CD4+CD8α+CD27+ central and CD4+CD8α+CD27- effector memory T cells as well as antigen-specific production of TNF-α and IFN-γ. This study of postnatal immune development defines basic cellular immune parameters of EGMs and represents an important milestone for the use of EGMs for immunological questions in experimental medicine.


Assuntos
Pesquisa Biomédica , Fator de Necrose Tumoral alfa , Animais , Anticorpos Monoclonais/metabolismo , Células Matadoras Naturais , Modelos Animais , Perforina/metabolismo , Suínos , Porco Miniatura , Fator de Necrose Tumoral alfa/metabolismo
7.
Viruses ; 14(7)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35891381

RESUMO

Equine hepacivirus (EqHV) is the closest known genetic homologue of hepatitis C virus. An effective prophylactic vaccine is currently not available for either of these hepaciviruses. The equine as potential surrogate model for hepacivirus vaccine studies was investigated, while equine host responses following vaccination with EqHV E2 recombinant protein and subsequent EqHV inoculation were elucidated. Four ponies received prime and booster vaccinations (recombinant protein, adjuvant) four weeks apart (day -55 and -27). Two control ponies received adjuvant only. Ponies were inoculated with EqHV RNA-positive plasma on day 0. Blood samples and liver biopsies were collected over 26 weeks (day -70 to +112). Serum analyses included detection of EqHV RNA, isotypes of E2-specific immunoglobulin G (IgG), nonstructural protein 3-specific IgG, haematology, serum biochemistry, and metabolomics. Liver tissue analyses included EqHV RNA detection, RNA sequencing, histopathology, immunohistochemistry, and fluorescent in situ hybridization. Al-though vaccination did not result in complete protective immunity against experimental EqHV inoculation, the majority of vaccinated ponies cleared the serum EqHV RNA earlier than the control ponies. The majority of vaccinated ponies appeared to recover from the EqHV-associated liver insult earlier than the control ponies. The equine model shows promise as a surrogate model for future hepacivirus vaccine research.


Assuntos
Hepacivirus , Doenças dos Cavalos , Animais , Anticorpos Antivirais , Hepacivirus/genética , Doenças dos Cavalos/prevenção & controle , Cavalos , Imunoglobulina G , Hibridização in Situ Fluorescente , Filogenia , RNA , Vacinação/veterinária , Vacinas Sintéticas/genética
8.
Front Immunol ; 13: 854257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464468

RESUMO

Antibody-secreting plasma cells (PCs) have remained largely uncharacterized for years in the field of porcine immunology. For an in-depth study of porcine PCs, we identified cross-reactive antibodies against three key transcription factors: PR domain zinc finger protein-1 (Blimp-1), interferon regulatory factor 4 (IRF4), and paired box 5 (Pax5). A distinct Blimp-1+IRF4+ cell population was found in cells isolated from blood, spleen, lymph nodes, bone marrow, and lung of healthy pigs. These cells showed a downregulation of Pax5 compared to other B cells. Within Blimp-1+IRF4+ B cells, IgM-, IgG-, and IgA-expressing cells were identified and immunoglobulin-class distribution was clearly different between the anatomical locations, with IgA+ PCs dominating in lung tissue and IgM+ PCs dominating in the spleen. Expression patterns of Ki-67, MHC-II, CD9, and CD28 were investigated in the different organs. A high expression of Ki-67 was observed in blood, suggesting a plasmablast stage. Blimp-1+IRF4+ cells showed an overall lower expression of MHC-II compared to regular B cells, confirming a progressive loss in B-cell differentiation toward the PC stage. CD28 showed slightly elevated expression levels in Blimp-1+IRF4+ cells in most organs, a phenotype that is also described for PCs in mice and humans. This was not seen for CD9. We further developed a FACS-sorting strategy for live porcine PCs for functional assays. CD3-CD16-CD172a- sorted cells with a CD49dhighFSC-Ahigh phenotype contained Blimp-1+IRF4+ cells and were capable of spontaneous IgG production, thus confirming PC identity. These results reveal fundamental phenotypes of porcine PCs and will facilitate the study of this specific B-cell subset in the future.


Assuntos
Antígenos CD28 , Plasmócitos , Animais , Antígenos CD28/metabolismo , Diferenciação Celular , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Fatores Reguladores de Interferon/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Fator de Transcrição PAX5/metabolismo , Suínos
9.
Front Immunol ; 13: 822258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371050

RESUMO

The activating receptor NKp46 shows a unique expression pattern on porcine leukocytes. We showed already that in swine not all NK cells express NKp46 and that CD3+NKp46+ lymphocytes form a T-cell subset with unique functional properties. Here we demonstrate the expression of NKp46 on CD4highCD14-CD172a+ porcine plasmacytoid dendritic cells (pDCs). Multicolor flow cytometry analyses revealed that the vast majority of porcine pDCs (94.2% ± 4) express NKp46 ex vivo and have an increased expression on the single-cell level compared to NK cells. FSC/SSChighCD4highNKp46+ cells produced high levels of IFN-α after CpG ODN 2216 stimulation, a hallmark of pDC function. Following receptor triggering with plate-bound monoclonal antibodies against NKp46, phosphorylation of signaling molecules downstream of NKp46 was analyzed in pDCs and NK cells. Comparable to NK cells, NKp46 triggering led to an upregulation of the phosphorylated ribosomal protein S6 (pS6) in pDCs, indicating an active signaling pathway of NKp46 in porcine pDCs. Nevertheless, a defined effector function of the NK-associated receptor on porcine pDCs could not be demonstrated yet. NKp46-mediated cytotoxicity, as shown for NK cells, does not seem to occur, as NKp46+ pDCs did not express perforin. Yet, NKp46 triggering seems to contribute to cytokine production in porcine pDCs, as induction of TNF-α was observed in a small pDC subset after NKp46 cross-linking. To our knowledge, this is the first report on NKp46 expression on pDCs in a mammalian species, showing that this receptor contributes to pDC activation and function.


Assuntos
Células Dendríticas , Receptor 1 Desencadeador da Citotoxicidade Natural , Animais , Interferon-alfa , Células Matadoras Naturais , Mamíferos/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Perforina/metabolismo , Suínos
10.
Front Immunol ; 13: 767530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154097

RESUMO

Natural killer (NK) cells have been studied extensively in humans and mice for their vital role in the vertebrate innate immune system. They are known to rapidly eliminate tumors or virus infected cells in an immune response utilizing their lytic properties. The natural cytotoxicity receptors (NCRs) NKp30 (NCR3), NKp44 (NCR2), and NKp46 (NCR1) are important mediators of NK-cell cytotoxicity. NKp44 expression was reported for NK cells in humans as well as in some non-human primates and found exclusively on activated NK cells. Previously, no information was available on NKp44 protein expression and its role in porcine lymphocytes due to the lack of species-specific monoclonal antibodies (mAbs). For this study, porcine-specific anti-NKp44 mAbs were generated and their reactivity was tested on blood and tissue derived NK cells in pigs of different age classes. Interestingly, NKp44 expression was detected ex vivo already on resting NK cells; moreover, the frequency of NKp44+ NK cells was higher than that of NKp46+ NK cells in most animals analyzed. Upon in vitro stimulation with IL-2 or IL-15, the frequency of NKp44+ NK cells, as well as the intensity of NKp44 expression at the single cell level, were increased. Since little is known about swine NK cells, the generation of a mAb (clone 54-1) against NKp44 will greatly aid in elucidating the mechanisms underlying the differentiation, functionality, and activation of porcine NK cells.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Adolescente , Adulto , Animais , Anticorpos Monoclonais/sangue , Doadores de Sangue , Células Cultivadas , Feminino , Humanos , Imunização/métodos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interleucina-4/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Suínos , Adulto Jovem
11.
Front Plant Sci ; 12: 747500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646292

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.

12.
Vaccines (Basel) ; 9(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34451970

RESUMO

Vaccination with the live attenuated vaccine Salmoporc is an effective measure to control Salmonella Typhimurium (STM) in affected swine populations. However, the cellular immune response evoked by the Salmoporc vaccine including differences in vaccinated pigs versus non-vaccinated pigs upon STM infection have not been characterized yet. To investigate this, tissue-derived porcine lymphocytes from different treatment groups (vaccination-only, vaccination and infection, infection-only, untreated controls) were stimulated in vitro with heat-inactivated STM and abundances of IFN-γ, TNF-α and/or IL-17A-producing T-cell subsets were compared across organs and treatment groups. Overall, our results show the induction of a strong CD4+ T-cell response after STM infection, both locally and systemically. Low-level induction of STM-specific cytokine-producing CD4+ T cells, notably for the IFN-γ/TNF-α co-producing phenotype, was detected after vaccination-only. Numerous significant contrasts in cytokine-producing T-cell phenotypes were observed after infection in vaccinated and infected versus infected-only animals. These results suggest that vaccine-induced STM-specific cytokine-producing CD4+ T cells contribute to local immunity in the gut and may limit the spread of STM to lymph nodes and systemic organs. Hence, our study provides insights into the underlying immune mechanisms that account for the efficacy of the Salmoporc vaccine.

13.
EBioMedicine ; 67: 103348, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906067

RESUMO

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sítios de Ligação , Células CHO , COVID-19/imunologia , Cricetulus , Diagnóstico Precoce , Células HEK293 , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
14.
Dev Comp Immunol ; 116: 103949, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253751

RESUMO

The re-emerging disease histomonosis is caused by the protozoan parasite Histomonas meleagridis that affects chickens and turkeys. Previously, protection by vaccination with in vitro attenuated H. meleagridis has been demonstrated and an involvement of T cells, potentially by IFN-γ production, was hypothesized. However, comparative studies between chickens and turkeys on H. meleagridis-specific T cells were not conducted yet. This work investigated IFN-γ production within CD4+, CD8α+ and TCRγδ+ (chicken) or CD3ε+CD4-CD8α- (turkey) T cells of spleen and liver from vaccinated and/or infected birds using clonal cultures of a monoxenic H. meleagridis strain. In infected chickens, re-stimulated splenocytes showed a significant increase of IFN-γ+CD4+ T cells. Contrariwise, significant increments of IFN-γ-producing cells within all major T-cell subsets of the spleen and liver were found for vaccinated/infected turkeys. This indicates that the vaccine in turkeys causes more intense systemic immune responses whereas in chickens protection might be mainly driven by local immunity.


Assuntos
Galinhas/imunologia , Interferon gama/imunologia , Vacinas Protozoárias/imunologia , Subpopulações de Linfócitos T/imunologia , Trichomonadida/imunologia , Perus/imunologia , Animais , Galinhas/parasitologia , Fígado/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Infecções Protozoárias em Animais/imunologia , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Baço/imunologia , Perus/parasitologia , Vacinação/veterinária
15.
Front Immunol ; 11: 582065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013937

RESUMO

The phenotype and function of immune cells that reside at the maternal-fetal interface in humans and mice have been, and still are, extensively studied with the aim to fully comprehend the complex immunology of pregnancy. In pigs, information regarding immune cell phenotypes is limited and mainly focused on early gestation whereas late gestation has not yet been investigated. We designed a unique methodology tailored to the porcine epitheliochorial placenta, which allowed us to address immune phenotypes separately in the maternal endometrium (ME) and fetal placenta (FP) by flow cytometry. In-depth phenotyping of NK cells, non-conventional and conventional T cells within maternal blood (mBld), ME, FP, and fetal spleen (fSpln) revealed major differences between these anatomic sites. In both maternal compartments, all NK cells were perforin+ and had NKp46-defined phenotypes indicative of late-stage differentiation. Likewise, T cells with a highly differentiated phenotype including CD2+CD8α+CD27dim/-perforin+ γδ T cells, CD27-perforin+ cytolytic T cells (CTLs), and T-bet+ CD4+CD8α+CD27- effector memory T (Tem) cells prevailed within these compartments. The presence of highly differentiated T cells was also reflected in the number of cells that had the capacity to produce IFN-γ. In the FP, we found NK cells and T cell populations with a naive phenotype including CD2+CD8α-CD27+perforin- γδ T cells, T-bet-CD4+CD8α-CD27+ T cells, and CD27+perforin- CTLs. However, also non-naive T cell phenotypes including CD2+CD8α+CD27+perforin- γδ T cells, T-bet+CD4+CD8α+CD27- Tem cells, and a substantial proportion of CD27-perforin+ CTLs resided within this anatomic site. Currently, the origin or the cues that steer the differentiation of these putative effector cells are unclear. In the fSpln, NKp46high NK cells and T cells with a naive phenotype prevailed. This study demonstrated that antigen-experienced immune cell phenotypes reside at the maternal-fetal interface, including the FP. Our methodology and our findings open avenues to study NK and T cell function over the course of gestation. In addition, this study lays a foundation to explore the interplay between immune cells and pathogens affecting swine reproduction.


Assuntos
Diferenciação Celular/imunologia , Células Matadoras Naturais/imunologia , Relações Materno-Fetais/fisiologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Feminino , Memória Imunológica/imunologia , Leucócitos Mononucleares , Ativação Linfocitária/imunologia , Perforina/imunologia , Placenta/imunologia , Gravidez , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Suínos
16.
Brain Res ; 1745: 146950, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32524994

RESUMO

Numerous studies report that changes in extracellular matrix components and receptors, such as CD44, contribute to immune cell recruitment and thus lesion formation in multiple sclerosis (MS). In the present study, we used the cuprizone model to elucidate the expression pattern of CD44 in a toxin-induced MS model. Therefore, tissues of cuprizone-intoxicated mice were analyzed by real-time qRT-PCR and immunohistochemical staining against CD44. Co-localization analyses of CD44-positive cells with glial cell markers were performed by immunofluorescence labeling and in-situ hybridization. To investigate the functional importance of CD44 expression for myelination and glial cell activation, Cd44-deficient mice were used. In this study we demonstrate that CD44 expression is induced in a time-dependent manner in an autoimmune-independent model of MS. Up-regulation of CD44 expression was primarily associated to the superficial and perivascular glia limitans and demyelinated white matter structures, particularly the corpus callosum. In the demyelinated corpus callosum, CD44 was localized on GFAP+ astrocytes and IBA1+ microglial cells. Despite a robust expression induction, Cd44-deficiency did not ameliorate cuprizone-induced pathology. Although further studies will be needed to examine the functional relevance of CD44 in the cuprizone model, the spatial and temporal expression pattern of CD44 will pave the way to evaluate its precise role in different (immune and non-immune) pathological conditions.


Assuntos
Quelantes/toxicidade , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Substância Branca/metabolismo , Substância Branca/patologia
17.
Front Immunol ; 11: 603089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584671

RESUMO

The gram-negative facultative intracellular bacteria Salmonella Typhimurium (STM) often leads to subclinical infections in pigs, but can also cause severe enterocolitis in this species. Due to its high zoonotic potential, the pathogen is likewise dangerous for humans. Vaccination with a live attenuated STM strain (Salmoporc) is regarded as an effective method to control STM infections in affected pig herds. However, information on the cellular immune response of swine against STM is still scarce. In this study, we investigated the T-cell immune response in pigs that were vaccinated twice with Salmoporc followed by a challenge infection with a virulent STM strain. Blood- and organ-derived lymphocytes (spleen, tonsils, jejunal and ileocolic lymph nodes, jejunum, ileum) were stimulated in vitro with heat-inactivated STM. Subsequently, CD4+ T cells present in these cell preparations were analyzed for the production of IFN-γ, TNF-α, and IL-17A by flow cytometry and Boolean gating. Highest frequencies of STM-specific cytokine-producing CD4+ T cells were found in lamina propria lymphocytes of jejunum and ileum. Significant differences of the relative abundance of cytokine-producing phenotypes between control group and vaccinated + infected animals were detected in most organs, but dominated in gut and lymph node-residing CD4+ T cells. IL-17A producing CD4+ T cells dominated in gut and gut-draining lymph nodes, whereas IFN-γ/TNF-α co-producing CD4+ T cells were present in all locations. Additionally, the majority of cytokine-producing CD4+ T cells had a CD8α+CD27- phenotype, indicative of a late effector or effector memory stage of differentiation. In summary, we show that Salmonella-specific multifunctional CD4+ T cells exist in vaccinated and infected pigs, dominate in the gut and most likely contribute to protective immunity against STM in the pig.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Imunogenicidade da Vacina , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/patogenicidade , Vacinação , Animais , Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Esquemas de Imunização , Fenótipo , Salmonelose Animal/sangue , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Sus scrofa , Vacinas Vivas não Atenuadas/administração & dosagem
18.
Vet Res ; 50(1): 107, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806018

RESUMO

The protozoan parasite Histomonas meleagridis is the causative agent of the re-emerging disease histomonosis of chickens and turkeys. Due to the parasite's extracellular occurrence, a type-2 differentiation of H. meleagridis-specific T cells has been hypothesized. In contrast, a recent study suggested that IFN-γ mRNA+ cells are involved in protection against histomonosis. However, the phenotype and cytokine production profile of H. meleagridis-specific T cells still awaits elucidation. In this work, clonal cultures of a virulent monoxenic strain of H. meleagridis were used for infecting chickens to detect IFN-γ protein and IL-13 mRNA by intracellular cytokine staining and PrimeFlow™ RNA Assays, respectively, in CD4+ and CD8ß+ T cells. Infection was confirmed by characteristic pathological changes in the cecum corresponding with H. meleagridis detection by immunohistochemistry and H. meleagridis-specific antibodies in serum. In splenocytes stimulated either with H. meleagridis antigen or PMA/ionomycin, IFN-γ-producing CD4+ T cells from infected chickens increased in comparison to cells from non-infected birds 2 weeks and 5 weeks post-infection. Additionally, an increase of IFN-γ-producing CD4-CD8ß- cells upon H. meleagridis antigen and PMA/ionomycin stimulation was detected. Contrariwise, frequencies of IL-13 mRNA-expressing cells were low even after PMA/ionomycin stimulation and mainly had a CD4-CD8ß- phenotype. No clear increase of IL-13+ cells related to H. meleagridis infection could be found. In summary, these data suggest that H. meleagridis infection induces a type-1 differentiation of CD4+ T cells but also of non-CD4+ cells. This phenotype could include γδ T cells, which will be addressed in future studies.


Assuntos
Galinhas , Citocinas/imunologia , Doenças das Aves Domésticas/imunologia , Infecções Protozoárias em Animais/imunologia , Trichomonadida/fisiologia , Animais , Fenótipo , Doenças das Aves Domésticas/parasitologia , Infecções Protozoárias em Animais/parasitologia , Linfócitos T/imunologia
19.
Front Immunol ; 10: 396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915070

RESUMO

Unlike mice and humans, porcine γδ T cells represent a prominent subset of T cells in blood and secondary lymphatic organs. GATA-3, T-bet and Eomesodermin (Eomes) are transcription factors with crucial functions in T-cell development and functional differentiation, but their expression has not been investigated in porcine γδ T cells so far. We analyzed the expression of these transcription factors in γδ thymocytes, mature γδ T cells from blood, spleen, lymph nodes, and lung tissue as well as in vitro stimulated γδ T cells on the protein level by flow cytometry. GATA-3 was present in more than 80% of all γδ-thymocytes. Extra-thymic CD2- γδ T cells expressed high levels of GATA-3 in all investigated organs and had a CD8α-/dimCD27+perforin- phenotype. T-bet expression was mainly found in a subset of CD2+ γδ T cells with an opposing CD8αhighCD27dim/-perforin+ phenotype. Eomes+ γδ T cells were also found within CD2+ γδ T cells but were heterogeneous in regard to expression of CD8α, CD27, and perforin. Eomes+ γδ T cells frequently co-expressed T-bet and dominated in the spleen. During aging, CD2-GATA-3+ γδ T cells strongly prevailed in young pigs up to an age of about 2 years but declined in older animals where CD2+T-bet+ γδ T cells became more prominent. Despite high GATA-3 expression levels, IL-4 production could not be found in γδ T cells by intracellular cytokine staining. Experiments with sorted and ConA + IL-2 + IL-12 + IL-18-stimulated CD2- γδ T cells showed that proliferating cells start expressing CD2 and T-bet, produce IFN-γ, but retain GATA-3 expression. In summary, our data suggest a role for GATA-3 in the development of γδ-thymocytes and in the function of peripheral CD2-CD8α-/dimCD27+perforin- γδ T cells. In contrast, T-bet expression appears to be restricted to terminal differentiation stages of CD2+ γδ T cells, frequently coinciding with perforin expression. The functional relevance of high GATA-3 expression levels in extra-thymic CD2- γδ T cells awaits further clarification. However, their unique phenotype suggests that they represent a thymus-derived separate lineage of γδ T cells in the pig for which currently no direct counterpart in rodents or humans has been described.


Assuntos
Fator de Transcrição GATA3/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Suínos/imunologia , Proteínas com Domínio T/biossíntese , Subpopulações de Linfócitos T/imunologia , Animais , Fator de Transcrição GATA3/imunologia , Fenótipo , Proteínas com Domínio T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
Vet Res ; 48(1): 4, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166835

RESUMO

Porcine contagious pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) remains one of the major causes of poor growth performance and respiratory disease in pig herds. While the role of antibodies against APP has been intensely studied, the porcine T cell response remains poorly characterized. To address this, pigs were intranasally infected with APP serotype 2 and euthanized during the acute phase [6-10 days post-infection (dpi)] or the chronic phase of APP infection (27-31 dpi). Lymphocytes isolated from blood, tonsils, lung tissue and tracheobronchial lymph nodes were analyzed by intracellular cytokine staining (ICS) for IL-17A, IL-10 and TNF-α production after in vitro stimulation with crude capsular extract (CCE) of the APP inoculation strain. This was combined with cell surface staining for the expression of CD4, CD8α and TCR-γδ. Clinical records, microbiological investigations and pathological findings confirmed the induction of a subclinical APP infection. ICS-assays revealed the presence of APP-CCE specific CD4+CD8αdim IL-17A-producing T cells in blood and lung tissue in most infected animals during the acute and chronic phase of infection and a minor fraction of these cells co-produced TNF-α. APP-CCE specific IL-17A-producing γδ T cells could not be found and APP-CCE specific IL-10-producing CD4+ T cells were present in various organs but only in a few infected animals. The frequency of identified putative Th17 cells (CD4+CD8αdimIL-17A+) in lung and blood correlated positively with lung lesion scores and APP-specific antibody titers during the chronic phase. These results suggest a potential role of Th17 cells in the immune pathogenesis of APP infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pulmão/patologia , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Células Th17/patologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Actinobacillus pleuropneumoniae/imunologia , Animais , Doença Crônica , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/patologia , Masculino , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...